On square lattice directed percolation and resistance models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 163545
(http://iopscience.iop.org/0305-4470/16/15/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:32

Please note that terms and conditions apply.

On square lattice directed percolation and resistance models \dagger

John C Wierman
Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, USA

Received 6 April 1983

Abstract

Recent papers by Dhar et al and Dhar showed that the standard directed percolation model, with blocked or one-way bonds, is dual to a percolation model with one-way or two-way bonds. This duality is exploited to improve lower bounds for the critical probability of the directed bond percolation model on the square lattice by considering k-order backflows. Two intuitive claims made in the papers mentioned above are verified in this paper. Wedge angles of the directed percolation model and the dual model exist almost surely and sum to π. As the order of backflows $k \rightarrow \infty$, the limit of the Dhar-Barma-Phani bounds is the correct critical probability. The proofs use techniques from the theories of subadditive processes and first passage percolation.

1. Introduction

1.1. DI and $D R$ models

Consider the bond percolation model on the square lattice in which each bond is blocked with probability p_{0}, one-way (horizontal bonds allow passage to the right only, vertical bonds up only) with probability p_{1}, and two-way with probability p_{2}, with $p_{0}+p_{1}+p_{2}=1$, independently of all other bonds. The blocked, one-way and two-way bonds may be thought of as insulators, diodes and resistors, respectively. In the terminology of Dhar et al (1981) the standard directed percolation models (where $p_{2}=0$) are called diode-insulator percolation models (denoted here by DI), and their dual models (where $p_{0}=0$) are called diode-resistor percolation models (denoted by DR). Let $\operatorname{DI}(p)$ represent the model with $p_{0}=1-p, p_{1}=p$ and $p_{2}=0$ for $0 \leqslant p \leqslant 1$, and $\operatorname{DR}(p)$ represent the model with $p_{0}=0, p_{1}=1-p$ and $p_{2}=p$ for $0 \leqslant p \leqslant 1$. The models $\operatorname{DI}(p)$ and $\operatorname{DR}(1-p)$ form a dual pair under the duality relationship of Dhar et al (1981) described in § 1.3.

1.2. Critical probabilities

For the $\mathrm{DI}(p)$ model, let $P_{\mathrm{DI}}(p)$ denote the probability that fluid from a source at the origin wets an infinite set of sites. $P_{\mathrm{DI}}(p)$ is called the percolation probability. Define the critical probability for the Di model by

$$
p_{\mathrm{DI}}=\inf \left\{0 \leqslant p \leqslant 1: P_{\mathrm{DI}}(p)>0\right\} .
$$

[^0]By translation invariance of the models, the quantities $P_{D I}(p)$ and $p_{D I}$ remain unchanged if defined in terms of a fixed site other than the origin.

For the $\mathrm{DR}(p)$ model, if fluid wets a site at (x, y), every site (x_{1}, y_{1}) with $x_{1} \geqslant x$ and $y_{1} \geqslant y$ is also wetted. If (x, y) is dry, then all sites $\left(x_{2}, y_{2}\right)$ with $x_{2} \leqslant x$ and $y_{2} \leqslant y$ are also dry. The set of wetted sites W, and the set of dry sites D, if both are non-empty, are separated by the set Δ of bonds which have endpoints in both W and D. Note that Δ is typically not a connected set of bonds. Δ is called the 'staircase' in Dhar et al (1981).

The percolation probability of the $\operatorname{DR}(p)$ model, denoted $P_{\mathrm{DR}}(p)$, is the probability that fluid from a single source located at the origin wets every site of the lattice. Define the critical probability

$$
p_{\mathrm{DR}}=\inf \left\{0 \leqslant p \leqslant 1: P_{\mathrm{DR}}(p)>0\right\}
$$

1.3. Duality

To describe the duality between DI and DR models, consider the DR model defined on the square lattice S. The Whitney dual lattice S^{*} is also a square lattice with its set of bonds in one-to-one corraspondence with the set of bonds of S. Denote the bond in S^{*} corresponding to $b \in S$ by b^{*}. For any bond b in S or S^{*}, let $X(b)=\mathrm{D}$, I or R if the bond b is a diode, insulator or resistor, respectively. Define a configuration on S^{*} from a DR model configuration on S by letting $X\left(b^{*}\right)=\mathrm{D}$, allowing passage upwards or to the left, if $X(b)=\mathrm{D}$, and letting $X\left(b^{*}\right)=\mathrm{I}$ if $X(b)=\mathrm{R}$. (Alternatively, the diodes in S^{*} could allow passage downwards or to the right.) If $\Delta \neq \varnothing$, the dual bonds corresponding to the bonds in Δ form a doubly infinite connected path in the dual lattice along which fluid could pass in the directed model. By rotation, the configuration on the dual lattice is seen to be equivalent to a configuration of the DI model. The staircase Δ corresponds to the edge of the 'backbone' of the infinite cluster in the DI model, i.e. the set of sites which are wetted and from which infinitely many sites are wetted. If $p>p_{\mathrm{DR}}$, there is no infinite cluster in the DI model, so $1-p \leqslant p_{\mathrm{DI}}$. Thus, $p_{\mathrm{DI}}+p_{\mathrm{DR}} \leqslant 1$. If $p<p_{\mathrm{DR}}$, then $\Delta \neq \varnothing$ almost surely (AS), so there is an infinite cluster in the DI model with probability one. By countability of the sites of S^{*}, and translation invariance, there exists an infinite cluster in the DI model from any fixed source site with positive probability. Then $1-p \geqslant p_{\mathrm{DI}}$, so we also have $p_{\mathrm{DI}}+p_{\mathrm{DR}} \geqslant 1$. Together, $p_{\mathrm{DI}}+p_{\mathrm{DR}}=1$.

1.4. Wedge angle

Dhar et al (1981) state that angles $\theta_{D I}(p)$ and $\theta_{D R}(p)$ exist such that for $p>p_{D I}$ the infinite cluster in the DI model is confined to a wedge of angle $\theta_{\text {DI }}(p)$, for $p<p_{\mathrm{DR}}$ the wetted region in the DR model is contained in a wedge of angle $\theta_{\mathrm{DR}}(p)$, and that by the duality relationship, for $p>p_{\mathrm{DI}}$.

$$
\theta_{\mathrm{DI}}(p)+\theta_{\mathrm{DR}}(1-p)=\pi
$$

because the maximum and minimum inclinations of infinite paths in the di model are identical to the inclinations of the boundary Δ^{*} of the wetted region in the dual DR model. This argument is valid if the limit $\lim _{n \rightarrow \infty} X_{n} / n$ exists, where $X_{n}=$ $\inf \{k \in \mathbb{Z}:(n, k)$ is wetted by fluid from the origin in the $D R$ model $\}$, which implies that an asymptotic direction exists for Δ and that the DR model wetted region is confined in a wedge of angle $\theta_{\mathrm{DR}}(1-p)=2 \tan ^{-1}\left(-\lim _{n \rightarrow \infty} X_{n} / n\right)+\frac{1}{2} \pi$ asymptotically.

However, if $\lim \inf _{n \rightarrow \infty} X_{n} / n<\lim \sup _{n \rightarrow \infty} X_{n} / n$, any confining wedge angles $\theta_{\mathrm{DI}}(p)$ and $\theta_{\mathrm{DR}}(1-p)$ then satisfy $\theta_{\mathrm{DI}}(p)+\theta_{\mathrm{DR}}(1-p)>\pi$. In $\S 2$, techniques from subadditive process theory, used for equating time constants in first passage percolation (Smythe and Wierman 1978), are applied to prove that $\lim _{n \rightarrow \infty}\left(X_{n} / n\right)$ exists and is constant with probability one.

1.5. Convergence of lower bounds

For $k \geqslant 1$, a k-order backflow path is a directed path p such that every site $P=\left(x_{0}, y_{0}\right) \in$ p is followed only by sites $(x, y) \in p$ with $x \geqslant x_{0}-k+1$. Dhar provides an upper bound for the critical probability of the $\operatorname{DR}(p)$ model by finding $\lim _{n \rightarrow \infty} Y_{n}^{(k)} / n$, where $Y_{n}^{(k)}=\inf \left\{k \in \mathbb{Z}_{+}:(n, k)\right.$ is wetted by fluid from the origin through a k-order backflow path in $\{(x, y): x \leqslant n\}\}$. Dhar states that as $k \rightarrow \infty$ the upper bounds converge to the correct critical probability. Section 3 provides a proof of this claim, using the methods of $\& 2$.

2. Existence of wedge angle

2.1. A subadditive process result

We first state a special case of a result due to Hammersley (1974) which is related to the theory of subadditive processes. A proof may be found in Smythe and Wierman (1978 p 20).

Theorem 2.1. Let $\left\{X_{n}, n \in \mathbb{N}\right\}$ be a sequence of random variables with distribution functions F_{n} and finite second moments. Suppose that for each pair (m, n) of positive integers with $m<n$ there exists a random variable $X_{m n}^{\prime}$ satisfying
(i) $X_{m n}^{\prime}$ has distribution function F_{n}
(ii) X_{m} and $X_{m n}^{\prime}$ are independent
(iii) $F_{n+m} \geqslant F_{m} * F_{n}$ for all m and n, where $*$ denotes the convolution operator
(iv) X_{n} is monntone in n.

Then $E\left(X_{n}\right)$ is a subadditive function in n, and $X_{n} / n \rightarrow \gamma$ almost surely, where $\gamma=$ $\lim E\left(X_{n} / n\right)=\inf E\left(X_{n} / n\right)$.

2.2. The cylinder-restricted process

The Hammersley result will be applied to a sequence of random variables that approximates the X_{n} sequence which defines the wedge angle in the $\operatorname{DR}(p)$ model. Let $S_{n}=\inf \{k \in \mathbb{Z}:(n, k)$ is wetted from the origin through a path lying entirely in $\{(x, y): 0 \leqslant x<n\}$ except for the final endpoint $\}$. We will refer to $\left\{S_{n}\right\}$ as the cylinderrestricted process. Let F_{n} denote the cumulative distribution function of S_{n}.

Lemma $2.2 \lim _{n \rightarrow \infty} S_{n} / n=\gamma_{0}$ As, where $\gamma_{0}=\inf E\left(S_{n} / n\right)$.
Proof. We verify the hypotheses of theorem 2.1. Let $S_{m n}^{\prime}=\inf \left\{k \in \mathbb{Z}:\left(n+m, S_{m}+k\right)\right.$ may be wetted from (m, S_{m}) through a path lying entirely in $\{(x, y): m \leqslant y<m+n\}$ except for the final endpoint\}. Note that the union of the cylinder path from (0,0) to (m, S_{m}) and the cylinder path from (m, S_{m}) to ($m+n, S_{m}+S_{m, n}^{\prime}$) is a cylinder path
from $(0,0)$ to $\left(m-n, S_{m}+S_{m, n}^{\prime}\right)$. Taking the infimum, we obtain

$$
\begin{equation*}
S_{m+n} \leqslant S_{m}+S_{m, n}^{\prime} \tag{1}
\end{equation*}
$$

Note that by independence of bonds in $x<m$ and $x \geqslant m$, and translation invariance,

$$
P\left(S_{m n}^{\prime} \leqslant \alpha \mid S_{m}=k\right)=P\left(S_{n} \leqslant \alpha\right) \quad \forall \alpha \in \mathbb{R}
$$

so $S_{m n}^{\prime}$ and S_{m} are stochastically independent and $S_{m n}^{\prime}$ has distribution function F_{n}. Then by inequality (1), condition (iii) of theorem 2.1 is satisfied.

In the $\operatorname{DR}(p)$ model, each vertical bond is directed upward with probability p. Thus, for any integer i, the m vertical bonds in $B_{i, m}=\{(x, y): 0 \leqslant x<m, i \leqslant y \leqslant i+1\}$ are all directed upwards simultaneously with probability p^{m}. In this case, there is a barrier which fluid cannot pass through from top to bottom. For fixed m, the events of existence of barriers in $B_{i, m}$ are independent events. Then for $i \leqslant-1, P\left(S_{m} \leqslant i\right) \leqslant P(\boldsymbol{Z}$ barriers in $\left.B_{m,-1}, \ldots, B_{m, i}\right)=\left(1-p^{m}\right)^{-i}$, so $E\left(S_{m}\right)^{2}<\infty$ as required for theorem 2.1. Since (n, S_{n}) is wetted in the $\operatorname{Dr}(p)$ model for any $n \geqslant m$, the sequence $\left\{S_{n}\right\}$ is monotone non-increasing, so theorem 2.1 may be applied to prove almost sure convergence.

2.3. Relaxation of cylinder restrictions

Define a cylinder-restricted process, for each k, by $S_{n}^{(k)}=\inf \{i \in \mathbb{Z}:(n, i)$ is wetted from the origin through a path lying entirely in $\{(x, y):-k \leqslant x<n+k\}\}$.

Lemma 2.3. $\lim _{n \rightarrow \infty} S_{n}^{(k)} / n=\gamma_{0}$ AS and $\lim _{n \rightarrow \infty} E\left[S_{n}^{(k)} / n\right]=\inf E\left[S_{n}^{(k)} / n\right]=\gamma_{0}$.
Proof. Define a shifted version of S_{n} by $T_{n}^{(k)}=\inf \{i \in \mathbb{Z}:(n-k, i)$ is wetted from $(-k, 0)$ through a path lying entirely in $\{(x, y): k \leqslant x<n-k\}$ except for the final endpoint $\}$. Note that $T_{n}^{(k)}$ and S_{n} are identically distributed, so that for each fixed $k, \lim _{n \rightarrow \infty} E\left[T_{n}^{(k)} / n\right]=\gamma_{0}$. Since the union of the line segment from $(-k, 0)$ to $(0,0)$, the $-k \leqslant x<n+k$ cylinder path from $(0,0)$ to $\left(n, S_{n}^{(k)}\right)$ and the line segment from $\left(n, \boldsymbol{S}_{n}^{(k)}\right)$ to $\left(n+k, S_{n}^{(k)}\right)$ gives $a-k \leqslant x<n+k$ cylinder path, we have

$$
\begin{equation*}
T_{n+2 k}^{(k)} \leqslant S_{n}^{(k)} \leqslant S_{n} \quad \forall n, k \geqslant 1 . \tag{2}
\end{equation*}
$$

Applying lemma 2.2, we have that

$$
\lim _{n \rightarrow \infty} S_{n} / n=\gamma_{0} \text { AS } \quad \text { and } \lim _{n \rightarrow \infty} T_{n}^{(k)} / n=\gamma_{0} \text { AS. }
$$

Thus, $\lim _{n \rightarrow \infty} T_{n+2 k}^{(k)} / n=\left(\lim _{n \rightarrow \infty} T_{n+2 k}^{(k)} /(n+2 k)\right)\left(\lim _{n \rightarrow \infty}(n+2 k) / n\right)=\gamma_{0}$ AS also, which implies that $\lim _{n \rightarrow \infty} S_{n}^{(k)} / n=\gamma_{0}$ As for each fixed k. Taking expectations in (2),

$$
E\left[T_{n+2 k}^{(k)}\right] \leqslant E\left[S_{n}^{(k)}\right] \leqslant E\left[S_{n}\right],
$$

which, using $\lim _{n \rightarrow \infty} E\left[T_{n}^{(k)} / n\right]=\lim _{n \rightarrow \infty} E\left[S_{n} / n\right]=\gamma_{0}$, implies that $\lim _{n \rightarrow \infty} E\left[S_{n}^{(k)} / n\right]=$ γ_{0} for each fixed k. Since $E\left[S_{n}^{(k)}\right]$ is subadditive in n for each fixed k, we have that $E\left[S_{n}^{(k)} / n\right] \geqslant \gamma_{0}$ for all $n, k \geqslant 1$, so inf $E\left[S_{n}^{(k)} / n\right]=\gamma_{0}$.

2.4. Convergence of expectations

We now begin consideration of the process of interest, $\left\{X_{n}\right\}$.
Lemma 2.4. $\lim _{n \rightarrow \infty} E\left[X_{n} / n\right]=\gamma_{0}$.

Proof. Note that for all positive integers n and k,

$$
X_{n} \leqslant S_{n}^{(k+1)} \leqslant S_{n}^{(k)} \leqslant S_{n} .
$$

For n and ω fixed, $S_{n}^{(k)}(\omega)$ is non-increasing in k, and $\lim _{k \rightarrow \infty} S_{n}^{(k)}(\omega)=X_{n}(\omega)$. By the monotone convergence theorem,

$$
\lim _{k \rightarrow \infty} E\left[S_{n}^{(k)} / n\right]=E\left[X_{n} / n\right]
$$

Since $E\left[S_{n}^{(k)} / n\right] \geqslant \gamma_{0}$ for all n and k by lemma 2.3, we have $E\left[X_{n} / n\right] \geqslant \gamma_{0}$ for all n, so

$$
\gamma_{0} \leqslant \lim _{n \rightarrow \infty} E\left[X_{n} / n\right] \leqslant \lim _{n \rightarrow \infty} E\left[S_{n} / n\right]=\gamma_{0}
$$

2.5. Almost sure convergence

Theorem 2.5. $\lim _{n \rightarrow \infty} X_{n} / n=\gamma_{0}$ AS.
Proof. Let $Y=\inf \{i \in \mathbb{Z}:(0, i)$ is wetted by fluid from the origin $\}$. We consider two cases.

Case 1. Suppose $E[Y]=-\infty$. Then

$$
E\left[X_{n}\right] \leqslant E[Y]=-\infty \quad \forall n \in \mathbb{Z}_{+}
$$

so $\gamma_{0}=-\infty$ by lemma 2.4. Hence

$$
\limsup _{n \rightarrow \infty} X_{n} / n \leqslant \lim _{n \rightarrow \infty} S_{n} / n=\gamma_{0}=-\infty \text { As }
$$

Case 2. Suppose $E[Y]>-\infty$. Define shifted versions of Y by $Y(x, y)=\inf \{i \in \mathbb{Z}$: $(x, y+i)$ is wetted by fluid from $(x, y)\}$, and shifted versions of S_{n} by $S_{n}\left(x_{0}, y_{0}\right)=$ $\inf \left\{i \in \mathbb{Z}:\left(x_{0}+n, i\right)\right.$ is wetted from $\left(x_{0}, y_{0}\right)$ through a path lying entirely in $\{(x, y)$: $\left.x_{0} \leqslant x<x_{0}+n\right\}$ except for the final endpoint $\}$. Define processes restricted to the right half-plane by $R_{n}\left(x_{0}, y_{0}\right)=\inf \left\{i \in \mathbb{Z}:\left(x_{0}+n, y_{0}+i\right)\right.$ is wetted from $\left(x_{0}, y_{0}\right)$ through paths contained entirely in $\left.\left.x \geqslant x_{0}\right\}\right\}$. For convenience, let $\boldsymbol{R}_{n}(0,0)=\boldsymbol{R}_{n}$.

Lemma 2.5. $\lim _{n \rightarrow \infty} R_{n} / n=\gamma_{0}$ AS.
Proof. Note that

$$
\begin{equation*}
S_{n}+Y\left(n, S_{n}-1\right) \leqslant R_{n} \leqslant S_{n} \tag{3}
\end{equation*}
$$

since any path to a site (n, y) with $y<S_{n}+Y\left(n, S_{n}-1\right.$) must lie above and to the right of the lowest paths for S_{n} and $Y\left(n, S_{n}-1\right)$ for $y \geqslant S_{n}+Y\left(n, S_{n}-1\right)$, and thus is wetted by fluid flowing to the right from them.

Also, since on the set $\left\{S_{n}=j\right\}, Y\left(n, S_{n}-1\right)$ depends only on the bonds in the region $y<j-1$, and S_{n} depends only on bonds in $y \geqslant j-1$, we have

$$
\begin{aligned}
P\left[Y\left(n, S_{n}-1\right)=i\right] & =\sum_{i=-\infty}^{0} P\left[Y\left(n, S_{n}-1\right)=i, S_{n}=j\right] \\
& =\sum_{j=-\infty}^{0} P\left[Y\left(n, S_{n}-1\right)=i \mid S_{n}=j\right] P\left[S_{n}=j\right] \\
& =\sum_{j=-\infty}^{0} P[Y=i] P\left[S_{n}=j\right]=P[Y=i] .
\end{aligned}
$$

Therefore, the distribution of $Y\left(n, S_{n}-1\right)$ is independent of S_{n}, and in particular $E\left[Y\left(n, S_{n}-1\right)\right]=E[Y]$ for all n.

Then $E|Y|<\infty$ implies that $\sum_{n=1}^{\infty} P\left[Y\left(n, S_{n}-1\right) / n>\varepsilon\right]<\infty$ for every $\varepsilon>0$. By the Borel-Cantelli lemma,

$$
\lim _{n \rightarrow \infty} Y\left(n, S_{n}-1\right) / n=0 \text { As. }
$$

By (3) and lemma 2.2, we have

$$
\lim \inf R_{n} / n \geqslant \gamma_{0} \mathrm{AS}
$$

so in fact $\lim _{n \rightarrow \infty}\left(R_{n} / n\right)=\gamma_{0}$ As.
To complete the proof of case 2 , we first note that since the events $B_{i}=\{\omega \in \Omega$: $\left.\lim _{n \rightarrow \infty} R_{n}(i, 0)=\gamma_{0}\right\}$ each have probability one, we have $P\left[\bigcap_{i=-\infty}^{0} B_{i}\right]=1$ and thus $P\left[\bigcap_{i=-\infty}^{0} B_{i} \cap\{Y<\infty\}\right]=1$. For $\omega \in \bigcap_{i=-\infty}^{0} B_{i} \cap\{Y<\infty\}$

$$
Y(\omega)+R_{n}(0, Y)(\omega) \leqslant X_{n}(\omega)
$$

implies that

$$
\liminf _{n \rightarrow \infty} \frac{X_{n}(\omega)}{n} \geqslant \lim _{n \rightarrow \infty} \frac{Y(\omega)}{n}+\lim _{n \rightarrow \infty} \frac{R_{n}(0, Y)(\omega)}{n}=0+\gamma_{0}=\gamma_{0} .
$$

We conclude that

$$
\liminf _{n \rightarrow \infty} X_{n} / n \geqslant \gamma_{0} \text { AS. }
$$

Since we trivially have

$$
\limsup _{n \rightarrow \infty} X_{n} / n \leqslant \limsup _{n \rightarrow \infty} S_{n} / n \leqslant \gamma_{0} \text { AS }
$$

the theorem is proved.

3. Convergence of bounds to the critical probability

Suppose $E[Y]>-\infty$. Then there is a finite constant γ_{0} such that $\lim _{n \rightarrow \infty} X_{n} / n=\gamma_{0}$ As. Since $\left\{X_{n}\right\}$ is a non-increasing sequence, then $P\left[X_{n}>-\infty\right.$ for all $\left.n\right]=1$. For $\omega \in$ $\left\{X_{n}>-\infty\right.$ for all $\left.n\right\}$, for each n there exists $k(\omega)$ such that there is a $k(\omega)$-order backflow path from the origin to $\left(n, X_{n}(\omega)\right.$), so $Y_{n}^{(k)}(\omega)=X_{n}(\omega)$ for all $k \geqslant k(\omega)$. Thus, for each fixed $n, Y_{n}^{(k)}$ is a non-increasing sequence in k, and $Y_{n}^{(k)} \rightarrow X_{n}$ almost surely as $k \rightarrow \infty$. By the monotone convergence theorem,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} E\left[Y_{n}(k) / n\right]=E\left[X_{n} / n\right] . \tag{4}
\end{equation*}
$$

Define shifted versions of $Y_{n}^{(k)}$ by $Y_{n}^{(k)}\left(x_{0}, y_{0}\right)=\inf \left\{i \in \mathbb{Z}:\left(x_{0}+n, y_{0}+i\right)\right.$ is wetted by fluid from the origin through a k-order backflow path in the region $\left.x_{0} \leqslant x \leqslant x+n\right\}$. Notice that

$$
Y_{m+n}^{(k)} \leqslant Y_{m}^{(k)}+Y_{n}^{(k)}\left(m, Y_{m}^{(k)}\right)
$$

An argument similar to that in lemma 2.5 shows that

$$
E\left[Y_{n}^{(k)}\left(m, Y_{m}^{(k)}\right)\right]=E\left[Y_{n}^{(k)}\right] \quad \forall n, k
$$

Therefore,

$$
E\left[Y_{m+n}^{(k)}\right] \leqslant E\left[Y_{m}^{(k)}\right]+E\left[Y_{n}^{(k)}\right],
$$

so for each fixed $k, E\left[Y_{n}^{(k)}\right]$ is a subadditive function of n. A standard result in the theory of subadditive functions (Hille and Phillips 1957 p 244) then implies that

$$
\lim _{n \rightarrow \infty} E\left[Y_{n}^{(k)} / n\right]=\inf _{n \rightarrow \infty} E\left[Y_{n}^{(k)} / n\right]=\gamma_{k} \text { exists. }
$$

Choose $\varepsilon<0$. There exists n_{0} sufficiently large that $E\left[X_{n_{0}} / n_{0}\right]<\gamma_{0}+\varepsilon$. By (4) there exists a k_{0} such that $E\left[Y_{n_{0}}^{\left(k_{0}\right)} / n_{0}\right]<\gamma_{0}+2 \varepsilon$, which implies that

$$
\gamma_{k_{0}}=\inf _{n \rightarrow \infty} E\left[Y_{n}^{\left(k_{0}\right)} / n\right]<\gamma_{0}+2 \varepsilon
$$

Since γ_{k} is non-increasing in k, and $\varepsilon<0$ is arbitrary,

$$
\lim _{k \rightarrow \infty} \gamma_{k} \leqslant \gamma_{0}
$$

Because $X_{n} \leqslant Y_{n}^{(k)}$ for all k and n, by lemma 2.4 we also have

$$
\gamma_{0} \leqslant \lim _{k \rightarrow \infty} \gamma_{k} .
$$

For $k=0,1,2, \ldots$, let $\gamma_{k} \equiv \gamma_{k}(p)$ to indicate explicitly the dependence on the parameter p of the $\operatorname{DR}(p)$ model and define $p_{\mathrm{DR}}(k)=\sup \left\{p \in[0,1]: \gamma_{k}(p) \geqslant-1\right\}$.

As indicated by Dhar et al, a slope $\gamma_{0}(p)<-1$ implies that an infinite cluster exists in the $\mathrm{DI}(1-p)$ model with probability zero. Then the entire lattice is wetted from the origin in the $\operatorname{DR}(p)$ model with probability one, so in fact $E[Y]=-\infty$ and $\gamma_{0}(p)=-\infty$. Thus, $p<p_{\mathrm{DR}}(0)$ implies that $p<p_{\mathrm{DR}}$, so $p_{\mathrm{DR}}(0) \leqslant p_{\mathrm{DR}}$. Trivially $p>$ $p_{\mathrm{DR}}(0)$ implies that $p>p_{\mathrm{DR}}$, so in fact $p_{\mathrm{DR}}(0)=p_{\mathrm{DR}}$, the correct critical probability.

Since $\gamma_{0}(p) \leqslant \gamma_{k+1}(p)$ for all $p \in[0,1]$, we have $p_{\mathrm{DR}}(0) \leqslant p_{\mathrm{DR}}(k+1) \leqslant p_{\mathrm{DR}}(k)$ for all k, so $p_{\mathrm{DR}}(0) \leqslant \lim _{k \rightarrow \infty} p_{\mathrm{DR}}(k)$. On the other hand, if $p>p_{\mathrm{DR}}(0)$, then $\gamma_{0}(p)<-1$, so $\gamma_{k}(p)<-1$ for some k, implying that $p>\lim _{k \rightarrow \infty} p_{\mathrm{DR}}(k)$. Thus, $p_{\mathrm{DR}}(0) \geqslant$ $\lim _{k \rightarrow \infty} p_{\mathrm{DR}}(k)$ also, so

$$
p_{\mathrm{DR}}=p_{\mathrm{DR}}(0)=\lim _{k \rightarrow \infty} p_{\mathrm{DR}}(k),
$$

so Dhar's bounds converge to the correct critical probability.

References

Dhar D 1982 J. Phys. A: Math. Gen. 15 1849-58
Dhar D, Barma M and Phani M K 1981 Phys. Rev. Lett. 47 1238-241
Gray L, Smythe R T and Wierman J C 1980 J. Appl. Prob. 17 979-86
Hammersley J M 1974 Ann. Prob. 2 652-80
Hille E and Phillips R S 1957 Functional Analysis and Semi-Groups (Providence, RI, USA: Am. Math. Soc.) Mauldon J G 1961 Proc. 4 th Berkley Symp Math. Stat. 2 337-45
Smythe R T and Wierman J C 1978 First-Passage Percolation on the Square Lattice (Berlin: Springer)

[^0]: \dagger Research sponsored in part by the National Science Foundation under grant MCS-8118229.

