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Abstract. Recent papers by Dhar et a1 and Dhar showed that the standard directed 
percolation model, with blocked or one-way bonds, is dual to a percolation model with 
one-way or two-way bonds. This duality is exploited to improve lower bounds for the 
critical probability of the directed bond percolation model on the square lattice by 
considering k-order backflows. Two intuitive claims made in the papers mentioned above 
are verified in this paper. Wedge angles of the directed percolation model and the dual 
model exist almost surely and sum to m As the order of backflows k + a ,  the limit of 
the Dhar-Barma-Phani bounds is the correct critical probability. The proofs use tech- 
niques from the theories of subadditive processes and first passage percolation. 

1. Introduction 

1.1.  DI and DR models 

Consider the bond percolation model on the square lattice in which each bond i’s 
blocked with probability p o ,  one-way (horizontal bonds allow passage to the right 
only, vertical bonds up only) with probability p l ,  and two-way with probability p 2 ,  
with p o + p l  + p 2  = 1, independently of all other bonds. The blocked, one-way and 
two-way bonds may be thought of as insulators, diodes and resistors, respectively. In 
the terminology of Dhar et a1 (1981) the standard directed percolation models (where 
p2  = 0) are called diode-insulator percolation models (denoted here by DI), and their 
dual models (where p o  = 0) are called diode-resistor percolation models (denoted by 
DR). Let D I ( ~ )  represent the model with p o  = 1 - p ,  p1 = p  and p 2  = 0 for 0 G p  G 1, 
and DR(P) represent the model with p o  = 0, p1= 1 - p  and p 2  = p for 0 ~p s 1. The 
models DI(P)  and D R ( ~  - p )  form a dual pair under the duality relationship of Dhar 
et a1 (1981) described in 8 1.3. 

1.2. Critical probabilities 

For the D I ( ~ )  model, let P D ~ ( ~ )  denote the probability that fluid from a source at the 
origin wets an infinite set of sites. PDl(p)  is called the percolation probability. Define 
the critical probability for the DI model by 

p D I = i n f ( O ~ p ~  1: PDI(p)>O}. 
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By translation invariance of the models, the quantities PDl(p) and PDI remain 
unchanged if defined in terms of a fixed site other than the origin. 

For the DR(P) model, if fluid wets a site at (x, y ) ,  every site (XI, y1) with x1 Z=x 

and y l  y is also wetted. If (x, y ) is dry, then all sites ( X Z ,  yz) with x z  C x and yz S y 
are also dry. The set of wetted sites W, and the set of dry sites D, if both are 
non-empty, are separated by the set A of bonds which have endpoints in both W and 
D. Note that A is typically not a connected set of bonds. A is called the ‘staircase’ 
in Dhar et a1 (1981). 

The percolation probability of the D R ( ~ )  model, denoted P D R ( p ) ,  is the probability 
that fluid from a single source located at the origin wets every site of the lattice. 
Define the critical probability 

PDR = inf(0 ~p c 1: P D R ( p )  > 0). 

1.3. Duality 

To describe the duality between DI and DR models, consider the DR model defined 
on the square lattice S. The Whitney dual lattice S* is also a square lattice with its 
set of bonds in one-to-one correspondence with the set of bonds of S. Denote the 
bond in S* corresponding to b E S by b*. For any bond 6 in S or S*,  let X ( b )  = D, 
I or R if the bond b is a diode, insulator or resistor, respectively. Define a configuration 
on S* from a DR model configuration on S by letting X(b*)=D, allowing passage 
upwards or to the left, if X ( b )  = D, and letting X ( b * )  = I if X ( b )  = R. (Alternatively, 
the diodes in S* could allow passage downwards or to the right.) If A # 0, the dual 
bonds corresponding to the bonds in A form a doubly infinite connected path in the 
dual lattice along which fluid could pass in the directed model. By rotation, the 
configuration on the dual lattice is seen to be equivalent to a configuration of the DI 
model. The staircase A corresponds to the edge of the ‘backbone’ of the infinite 
cluster in the DI model, i.e. the set of sites which are wetted and from which infinitely 
many sites are wetted. If p > p D R ,  there is no infinite cluster in the DI model, so 
1 - p  CPDI.  Thus, P D I + P D R ~  1. If p < P D R ,  then A #  0 almost surely (AS), so there 
is an infinite cluster in the DI model with probability one. By countability of the sites 
of S*, and translation invariance, there exists an infinite cluster in the DI model from 
any fixed source site with positive probability. Then 1 - p  >-pDI, so we also have 
P D I + P D R ~  1. Together, P D I + ~ D R =  1. 

1.4. Wedge angle 

Dhar et a1 (i981) state that angles @ D I ( p )  and @ D R ( P )  exist such that for p >pDI the 
infinite cluster in the DI model is confined to a wedge of angle e&), for p <PDR the 
wetted region in the DR model is contained in a wedge of angle e D R ( p ) ,  and that by 
the duality relationship, for p > pDI . 

e D I ( p )  -k o D R ( 1  - p )  = ~ T T ,  

because the maximum and minimum inclinations of infinite paths in the DI model are 
identical to the inclinations of the boundary A* of the wetted region in the dual DR 
model. This argument is valid if the limit lim,,,,X,,/n exists, where X,, = 
inf{k E Z: (n ,  k) is wetted by fluid from the origin in the DR model}, which implies 
that an asymptotic direction exists for A and that the DR model wetted region is 
confined in a wedge of angle O D R ( 1  - p )  = 2 tan-’(-lim,,,, ~ , , / n )  +& asymptotically. 
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However, if lim inf,,,,X,,/n <lim SUpn+m X, , /n ,  any Confining wedge angles f3DI(p) 
andODR(l - p )  thensatisfyf3DI(p)+f3DR(1 -p)> .rr .  In § 2, techniquesfromsubadditive 
process theory, used for equating time constants in first passage percolation (Smythe 
and Wierman 1978), are applied to prove that lim,,+,(X,,/n) exists and is constant 
with probability one. 

1.5.  Convergence of lower bounds 

For k a 1, a k-order backflow path is a directed path p such that every site P = ( x o ,  yo) E 
p is followed only by sites ( x ,  y ) E p with x 2 x o  - k + 1. Dhar provides an upper bound 
for the critical probability of the D R ( ~ )  model by finding limn+, YLk'/n, where 
Y',"' = inf{k E Z, : (n,  k )  is wetted by fluid from the origin through a k-order backflow 
path in { ( x ,  y): x s n}} .  Dhar states that as k + 00 the upper bounds converge to the 
correct critical probability. Section 3 provides a proof of this claim, using the methods 
of 0 2. 

2. Existence of wedge angle 

2.1 .  A subadditive process result 

We first state a special case of a result due to Hammersley (1974) which is related to 
the theory of subadditive processes. A proof may be found in Smythe and Wierman 
(1978 p 20). 

Theorem 2 .1 .  Let {X,,, n E N} be a sequence of random variables with distribution 
functions F, and finite second moments. Suppose that for each pair (m, n )  of positive 
integers with m < n there exists a random variable XL,, satisfying 

(i) XL,, has distribution function F,, 
(ii) X, and XL,, are independent 
(iii) F,,, a F, * F,, for all m and n,  where * denotes the convolution operator 
(iv) X,, is monotone in n.  

Then E(X, , )  is a subadditive function in n, and X,,/n + y almost surely, where y = 
lim E(X, , /n)  = inf E(X, , /n  ). 

2.2. The cylinder-restricted process 

The Hammersley result will be applied to a sequence of random variables that 
approximates the X,, sequence which defines the wedge angle in the D R ( ~ )  model. 
Let S,  =inf{k EZ: (n ,  k )  is wetted from the origin through a path lying entirely in 
{ ( x ,  y) :  0 sx < n }  except for the final endpoint}. We will refer to {S,} as the cylinder- 
restricted process. Let F,, denote the cumulative distribution function of s,, . 

Lemma 2.2 S , /n  = yo AS, where yo = inf €(&In) .  

Proof. We verify the hypotheses of theorem 2.1. Let SL, =inf{k EZ: ( n  +m, S ,  + k )  
may be wetted from (m, S,) through a path lying entirely in { ( x ,  y ) :  m c y  < m  + n }  
except for the final endpoint}. Note that the union of the cylinder path from ( 0 , O )  
to (m, S,) and the cylinder path from (m, S,) to ( m  + n ,  S, +Si,,) is a cylinder path 
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from (0,O) to (m -n, S ,  +SL,,). Taking the infimum, we obtain 

S m + n  S s m  + s L . n .  (1) 

P ( S ; ,  c a IS, = k) = P ( S ,  c a) 
Note that by independence of bonds in x < m and x 3 m, and translation invariance, 

V‘(YER 

so SL,, and S ,  are stochastically independent and SL,, has distribution function F,. 
Then by inequality ( l ) ,  condition (iii) of theorem 2.1 is satisfied. 

In the D R ( ~ )  model, each vertical bond is directed upward with probability p .  
Thus, for any integer i, the m vertical bonds in Bj , ,  = { ( x ,  y): 0 S x  < m, i S y C i + 1) 
are all directed upwards simultaneously with probability pm, In this case, there is a 
barrier which fluid cannot pass through from top to bottom. For fixed m, the events 
of existence of barriers in Bi,, are independent events. Then for i S -1, P ( S ,  s i )  C P ( 3  
barriers in B m , - l , .  . . , B,,j)  = (l-p”’)-’, so E(S,)*<00 as required for theorem 2.1. 
Since (n ,  S , )  is wetted in the D R ( ~ )  model for any n 3 m, the sequence {S , }  is monotone 
non-increasing, so theorem 2.1 may be applied to prove almost sure convergence. 

2.3. Relaxation of cylinder restrictions 

Define a cylinder-restricted process, for each k, by SLk’ = inf{i E Z: (n, i )  is wetted from 
the origin through a path lying entirely in {(x, y ) :  -k c x < n + k}}. 

Lemma 2.3. limfl+m S?’/n =yo AS and lim,,,E[S?’/n] = inf E[S!,k’/n] = yo 

Proof. Define a shifted version of S ,  by TLk’ = inf{i E 72: (n - k, i )  is wetted from (-k, 0) 
through a path lying entirely in {(x, y ) :  k s x  < n - k} except for the final endpoint}. 
Note that TLk’ and S, are identically distributed, so that for each fixed 
k, limn+m E[TLk’/n] = yo. Since the union of the line segment from (-k, 0) to (0, 0), 
the -k S x  < n  + k  cylinder path from (0,O) to (n, SLk’) and the line segment from 
(n, S‘,“’) to (n + k, SLk)) gives a - k s x  < n + k cylinder path, we have 

Vn, k 3 1. (2) T(k)  
n + 2 k  S s‘,“’ s, 

Applying lemma 2.2, we have that 

lim S,/n = yo AS and lim TLk’/n = yo AS. 
n -m fl-cn 

n u s ,  limn+% T!,Yzk/n =(limn+m T L ~ z k / ( n + 2 k ) ) ( l i m , , , ( n + 2 k ) / n ) =  yo AS also, 
which implies that limn+% SLk’/n = yo AS for each fixed k. Taking expectations in (2), 

E [  TLkJ2k ] S E [SLk’ ] =S E [s, 1, 
( k )  which,usinglim,,,E[T, /n]  = lim,,,E[S,/n] = y o ,  implies that lim,,,EISLk’/n] = 

yo for each fixed k. Since E[SLk’] is subadditive in n for each fixed k, we have that 
E[Skk’/n] 3 yo for all n, k 3 1, so inf E[SLk’/n] = y o .  

2.4. Convergence of expectations 

We now begin consideration of the process of interest, {X,,}. 

Lemma 2.4. lim,,+m E[X,/n] = y o .  
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Proof. Note that for all positive integers n and k, 
x, SS?’” S S , ,  

For n and o fixed, SLk’(w)  is non-increasing in k, and limk,,S!,k’(w)=X,(o). By 
the monotone convergence theorem, 

lim E[SLk’ /n]  =E[X,/nl. 
k-m 

Since E[SLk’/n]  2 yo  for all n and k by lemma 2.3, we have E[X,,/n] a yo for all n, so 

yo  s lim E [ X , / n ]  S lim E [ S , / n ]  = yo. 
n-ao ,-roc 

2.5. Almost sure convergence 

Theorem 2.5. limn-* X,/n = yo AS. 

Proof. Let Y = inf{i E Z: (0 ,  i )  is wetted by fluid from the origin}. We consider two 
cases. 

Case 1. Suppose E [  Y ]  = -CO. Then 

E[X,] S E [  Y ]  = -CO 

so yo  = -CO by lemma 2.4.  Hence 

V n  EZ+, 

lim sup X,/n s lim S,/n = yo  = -CO AS. 
n-m fl-w 

Case 2. Suppose E [  Y ]  > --CO. Define shifted versions of Y by Y(x,  y )  = inf{i E Z: 
( x ,  y + i )  is wetted by fluid from ( x ,  y)}, and shifted versions of S,  by S,(XO, yo) = 
inf{i EZ: ( x O + n ,  i) is wetted from ( x o ,  yo)  through a path lying entirely in { ( x ,  y ) :  
xo s x < x O  + n} except for the final endpoint}. Define processes restricted to the right 
half-plane by R,(xo, yo) = inf{i E Z: ( x O +  n, y o  + i )  is wetted from ( x O ,  yo) through paths 
contained entirely in x 3 x o } } .  For convenience, let R,(O, 0) = R,. 

Lemma 2.5. lim,+ao R,/n = Y O  AS. 

Proof. Note that 

S ,  + Y (a, S ,  - 1) S Rn S Sn (3) 

since any path to a site (a, y )  with y < S ,  + Y(n,  S ,  - 1) must lie above and to the right 
of the lowest paths for S,  and Y(n,  S ,  - 1) for y 3 S ,  + Y (n, S ,  - l), and thus is wetted 
by fluid flowing to the right from them. 

Also, since on the set { S ,  = j } ,  Y(n,  S ,  - 1) depends only on the bonds in the region 
y < j - 1, and S,  depends only on bonds in y 2 j - 1, we have 
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Therefore, the distribution of Y(n ,  S, - 1) is independent of S,, and in particular 
E [  Y ( n ,  S, - l)] = E [  Y ]  for all n .  

Then ElYI<oo implies that c ~ = ; " = , p [ Y ( n , S , - l ) / n > & ] < c o  for every ~ 7 0 .  By 
the Borel-Cantelli lemma, 

lim Y (n, S, - l ) / n  = 0 AS. 
n-m 

By (3) and lemma 2.2, we have 

lim inf R,/n y o  AS 

so in fact l im,AR, /n)  = yo AS. 

To complete the proof of case 2 ,  we first note that since the events Bi ={U E SZ: 
limn-rm R,(i, 0) = yo} each have probability one, we have P[ni=-,Bi] = 1 and thus 

0 

P[np=-, B~ n { ~  <CO)] = I. For w E np=-m Bi n { Y  

Y (w ) + R, (0, Y ) ( U )  s X, (0) 
implies that 

We conclude that 

Iim inf X, /n  yo AS. 
n-m 

Since we trivially have 

lim sup x,/n s l i m  sup S , / n  s yo AS 
n-rm n-m 

the theorem is proved. 

3. Convergence of bounds to the critical probability 

Suppose E [  Y ]  > -a. Then there is a finite constant yo such that limn+m X,/n  = yo AS. 
Since {X,} is a non-increasing sequence, then P[X,  > --a for all n] = 1. For w E 
{ X ,  > --03 for all n}, for each n there exists k(w) such that there is a k(w)-order 
backflow path from the origin to ( n , X , ( W ) ) ,  so Ykk)(u)  = X , ( w )  for all k > k ( w ) .  
Thus, for each fixed n, Ykk) is a non-increasing sequence in k, and Ykk) + X ,  almost 
surely as k + 03. By the monotone convergence theorem, 

lim E [  Y,  ( k ) / n ]  = E [ X , / n ] .  (4) 
k -rDi 

Define shifted versions of YLk' by YLk'(x0, yo)=inf{i EZ: ( x o + n ,  yo+i )  is wetted 
by fluid from the origin through a k -order backflow path in the region xo s x S x + n}. 
Not ice that 

y ( k )  mi, s Y Z 1  + YLk'(m, YE', .  

An argument similar to that in lemma 2.5 shows that 

E [  yLk (m,  Y 11 = E [ Y Lk 1 Vn, k. 
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Therefore, 

E [  Y:le,]sE[ Y:’]+E[ Ykk’], 

so for each fixed k, E [  Yy’] is a subadditive function of n. A standard result in the 
theory of subadditive functions (Hille and Phillips 1957 p 244) then implies that 

Choose E < 0. There exists no sufficiently large that EIX,,,,/no]< yo+ E .  By (4) there 
exists a k o  such that E [  Y3;l’/no] < yo + 2 ~ ,  which implies that 

y b  = inf E [  Y‘,kfl’/n] < yo+ 2 ~ .  
n -a 

Since Yk is non-increasing in k, and E < 0 is arbitrary, 

lim Yk < y o .  
k-m 

Because X,, S YLk’ for all k and n, by lemma 2.4 we also have 

yo lim yk. 
k -CC 

For k = 0, 1,2 ,  . . . , let Y k  = Yk ( p )  to indicate explicitly the dependence on the para- 
meter p of the D R ( ~ )  model and define pDR(k) = sup{p E [O, 11: Yk ( p )  > -1). 

As indicated by Dhar et af, a slope yofp)  < - 1 implies that an infinite cluster exists 
in the D I ( ~  - p )  model with probability zero. Then the entire lattice is wetted from 
the origin in the DR(P) model with probability one, so in fact E[Y]=-co and 
y o ( p )  = -a. Thus, p < ~ D R ( O )  implies that p <pDR, so pDR(0) s pDR. Trivially p > 
PDR(O) implies that p >PDR, so in fact pDR(0) =pDR, the correct critical probability. 

Since YO(P)sYk+l(P) for all p E EO, 11, we have pDR(0)spDR(k + l ) s p D R ( k )  for 
all k, SO pDR(0)shk+mPDR(k). On the other hand, if p >PDR(O), then yo(p)<- l ,  
SO Yk(P)<-1 for Some k, implying that P>limk,mPDR(k). Thus, PDR(O)> 
limk,, pDR(k) also, SO 

PDR =PDR(O) = limk-mpDR(k), 

so Dhar’s bounds converge to the correct critical probability. 
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